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I. REVIEW

Last time we:
(1) Defined what a branch of a multi-valued function is
(2) Finished defining hyperelliptic curves
(3) Defined differentials and showed there are no nonzero holomorphic differentials

on P1.

II. DIFFERENTIALS, CONT.

Example 1. Let E : y2 = f (x) be an affine elliptic curve. We claim that the differntial

ω =
dx
y

is holomorphic. Implicitly differentiating, we see that

2y dy = f ′(x) dx =⇒ dx
y

= 2
dy

f ′(x)
.

Let U be the open set where y 6= 0 and V be the open set where f ′(x) 6= 0. Note that
these two sets cover E [why?], and the above calculation shows that we can extend the

definition of ω to all of E by taking ω|V = 2
dy

f ′(x)
. [Why is this meromorphic on V?]

Lemma 1. Let X be a Riemann surface, U ⊆ X be a chart, and ω be a meromorphic differential
on U. Then there is at most one meromorphic differential η on X such that η|U = ω.

Proof. This follows from the Identity Theorem for meromorphic functions. �
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Remark 2.
(1) It is possible for there to be zero such extensions. For instance, consider the dif-

ferential ω = ez dz on C, thought of as a chart on the Riemann sphere. There is
no extension of ω to a meromorphic differential on Ĉ because ez has an essential
singularity at ∞.

(2) The same result is true for meromorphic functions.

Definition 3. The genus g(X) of a compact, connected Riemann surface X is the dimension
of the space Ω(X) of holomorphic differentials as a C-vector space.

Remark 4. One can show that this agrees with the topological notion of genus.

Proposition 5. Let X be a compact, connected Riemann surface of genus g and ω ∈ M(1)(X)
be a meromorphic differential on X. Then the number of zeroes of ω minus the number of its poles,
counted with multiplicity, is 2g− 2.

Remark 6. See Abhyankar’s Historical Ramblings in Algebraic Geometry and Related Algebra
for many more characterizations of the genus of an algebraic curve.

Thus we see that differentials are useful because they allow us to define invariants of
a given Riemann surface X. They are also useful for embedding a Riemann surface in
projective space.

Let ω1, . . . , ωg be a basis of holomorphic differentials on a compact, connected Riemann
surface X of genus g. Given a point P ∈ X, write ωi|U = fi dz on some neighborhood U
of P with local coordinate z. Define

κU : U → Pg−1

P 7→ [ f1(P) : · · · : fg(P)]

and define κ : X → Pg−1 by κ(P) = κ|U(P) where U is some chart containing P.
Note that this map is well-defined by the transformation property of differentials. Sup-

pose P ∈ V for some other neighborhood V of P with local coordinate w, and ωi|V =
hi dw. Then hi dw = fi dz on U ∩V, so

[ f1(P) : · · · : fg(P)] =
[

h1(P)
dw
dz

(P) : · · · : hg(P)
dw
dz

(P)
]
= [h1(P) : · · · : hg(P)] .

This shows that the definition of κ is independent of the choice of chart, so κ is well-
defined.

Definition 7. With notation as above, the map κ : X → Pg−1 is called the canonical map.

• If g = 0, there are no nonzero holomorphic differentials.
• If g = 1, then Pg−1 = P0, which is just a point.
• If g = 2, then Pg−1 = P1. It turns out that all genus 2 curves are hyperellip-

tic (which we may prove later), and κ is the degree 2 map which, when X is in
Weierstrass form, is simply the projection (x, y) 7→ x.
• If g ≥ 3 and X is not hyperelliptic, then κ gives an embedding of X into projective

space.
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III. TOPOLOGICAL PROPERTIES OF SURFACES AND THE RIEMANN-HURWITZ FORMULA

III.1. Triangulations and Euler characteristic.

Definition 8. Let X be a compact topological surface.
(1) A curved triangle in X is a subspace A of X and a homeomorphism h : T → A where

T is a closed triangular region in the plane. If e is an edge of T, then h(e) is an edge
of A; if v is a vertex of T, then h(v) is a vertex of A.

(2) A triangulation of X is a collection {Ai}i of curved triangles in X such that
⋃

i

Ai = X

and for all i 6= j the intersection Ai ∩ Aj is either
• empty;
• a vertex of both Ai and Aj; or
• and edge of both Ai and Aj.

(In other words, if two triangles intersect in two vertices, then they must also in-
tersect in the edge between them.)

(3) If X admits a triangulation, then it is triangulable.

Theorem 9 (Radó). Every topological surface is triangulable.

Definition 10. Let X be a compact topological surface and T is a triangulation of X with
v vertices, e edges, and f triangles (faces). The Euler characteristic of X with respect to T is

χ(X) := v− e + f .

Theorem 11.
(a) The Euler characteristic χ(X) is independent of the choice of triangulation, hence is an

invariant of the surface X.
(b) If X is an orientable, compact topological surface of genus g, then χ(X) = 2− 2g.

Proof. This is proven in Girondo–González-Diez, Proposition 1.54. �

III.2. The Riemann-Hurwitz formula.

Theorem 12 (Riemann-Hurwitz). Let π : X → Y be a morphism of compact, connected Rie-
mann surfaces. Then

2g(X)− 2 = deg(π)(2g(Y)− 2) + ∑
P∈X

(eP(π)− 1) .

Proof. Since X is compact, then the set of ramification points is finite, so the sum on the
righthand side is finite.

Take a triangulation T of Y such that each ramification value of π in Y is a vertex of
a triangle. (Given any triangulation, this condition can be satisfied: add a vertesx at
each ramification value and subdivide the triangle containing it.) Let v, e, and f be the
number of vertices, edges, and faces of T. Pull T back by π to obtain a triangulation T′

of X, and denote its number of vertices, edges, and faces by v′, e′ and f ′. Note that every
ramification point of π is a vertex in T′.

Since there are no ramification values lying in the interior of a triangle in T, then each
triangle on Y lifts to deg(π) triangles on X, so f ′ = deg(π) f . Similarly, e′ = deg(π)e. Fix
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a vertex Q ∈ Y. The number of preimages of Q in X is #π−1(Q). Note that

deg(π) = ∑
P∈π−1(Q)

eP(π) = ∑
P∈π−1(Q)

1 + ∑
P∈π−1(Q)

(eP(π)− 1)

= #π−1(Q) + ∑
P∈π−1(Q)

(eP(π)− 1)

so
#π−1(Q) = deg(π)− ∑

P∈π−1(Q)

(eP(π)− 1) .

Thus the total number of vertices in X, which is the total number of preimages of vertices
in Y is given by

v′ = ∑
Q vertex of Y

#π−1(Q) = ∑
Q vertex of Y

deg(π)− ∑
P∈π−1(Q)

(eP(π)− 1)


= deg(π)v− ∑

Q vertex of Y
∑

P∈π−1(Q)

(eP(π)− 1)

= deg(π)v− ∑
P vertex of X

(eP(π)− 1) .

Thus

2g(X)− 2 = −χ(X) = −v′ + e′ − f ′

= −deg(π)v + ∑
P vertex of X

(eP(π)− 1) + deg(π)e− deg(π) f

= −deg(π)χ(Y) + ∑
P vertex of X

(eP(π)− 1)

= deg(π)(2g(Y)− 2) + ∑
P∈X

(eP(π)− 1)

where the last equality holds because every ramification point of π is a vertex of X. �

Remark 13. The Riemann-Hurwitz formula is very useful for computing the genus of a
Riemann surface. Often one takes Y = P1, so then it suffices to compute the ramification
indices eP(π) in order to determine the genus of X.

Example 14. Let E : y2 = f (x) be an elliptic curve given by a Weierstrass equation, and
let r1, r2, r3 be the roots of f . Consider the projection

π : E→ P1

[X : Y : Z] 7→ [X : Z]

which has degree 2. As we have previously seen, π is ramified at [rj : 0 : 1] for j = 1, 2, 3
and at [0 : 1 : 0], all with ramification index 2. By the Riemann-Hurwitz formula, we have

2g(E)− 2 = 2(2g(P1)− 2) + ∑
P∈E

(eP(π)− 1) = 2(−2) + 1 + 1 + 1 + 1 = 0

confirming that g(E) = 1.

Corollary 15. Let π : X → Y be a morphism of compact, connected Riemann surfaces.
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(a) g(X) ≥ g(Y). In particular, if g(X) = 0, then g(Y) = 0.
(b) If g(Y) = 0 and g(X) > 0, then π must be ramified.
(c) If g(Y) = 1, then π is unramified iff g(X) = 1.

IV. THE FUNDAMENTAL GROUP AND COVERING SPACES

IV.1. A crash course on the fundamental group. Here we collect some useful facts about
fundamental groups. For a more complete treatment, I recommend Rotman’s An Intro-
duction to Algebraic Topology.
Definition 16. Let X be a topological space and P ∈ X.

• A path on X is a continuous map γ : [0, 1]→ X. A loop based at P is a path γ on X
such that γ(0) = γ(1) = P.
• Two loops γ1 and γ2 based at P are (pointed) homotopic if there is a continuous map

H : [0, 1]× [0, 1]→ X such that

H|0×[0,1] = γ1, H|1×[0,1] = γ2

and H(s, 0) = H(s, 1) = P for all s ∈ [0, 1]. Such an H is a (pointed) homotopy of γ1
and γ2.

[See picture on p. 42 of Rotman.]
Lemma 2. Homotopy is an equivalence relation on the set of loops based at P.

Given a path γ, we denote its homotopy class by [γ].
Definition 17. Given two paths γ1, γ2 with γ1(1) = P = γ2(0), we define their concatena-
tion by

(γ1 ∗ γ2)(t) =

{
γ1(2t) if 0 ≤ t ≤ 1/2
γ2(2t− 1) if 1/2 ≤ t ≤ 1 .

In other words, γ1 ∗ γ2 is the path γ1 followed by the path γ2, with the variable appro-
priately rescaled so that the domain is still [0, 1].
Definition 18. Let X be a topological space and P ∈ X. The fundamental group of X (based
at P) is the set of homotopy classes of loops based at P, and is denoted π1(X, P). The
space X is simply connected if π1(X, P) if it is connected and π1(X, P) is the trivial group
for some (hence, any) choice of basepoint P ∈ X.
Proposition 19. The fundamental group is a group under the concatenation operation defined
above.

[What is the identity element?]

Remark 20. We’ll abuse notation slightly as follows. If γ is a loop on X, we denote by γ−1

the reverse path given by
γ−1(t) := γ(1− t) .

Lemma 3. Assume X is path connected and let P, Q ∈ X. Then π1(X, P) ∼= π1(X, Q).
Proof idea. Let α : [0, 1] → X be a path from P to Q, so α(0) = P and α(1) = Q. Given a
loop γ based at P, then α−1 ∗ γ ∗ α is a loop based at Q. Similarly, given a loop δ based
at Q, we obtain a loop α ∗ δ ∗ α−1 based at P. These two maps are homomorphisms and
mutually inverse up to homotopy, hence provide the desired isomorphism. �
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IV.2. Covering spaces. Covering spaces provide a powerful tool for computing funda-
mental groups. They are also in some sense (which can be made very precise) the topo-
logical analogue of an algebraic closure, so studying covering spaces is like a topological
version of Galois theory.

Historically, they often arose when people were trying to solve differential equations
on a space that had “holes”, i.e., was not simply connected. Often the problem couldn’t
be solved on the starting space, but did have a solution after passing to a suitable cover.

Definition 21. Let X be a topological space. A covering space of X is a topological space
E together with a continuous map π : E → X called a covering map such that the fol-
lowing property holds. For each P ∈ X there exists a neighborhood V of P such that
π−1(V) =

⊔
i

Ui, where the sets Ui are pairwise disjoint and the restriction π|Ui → V is a

homeomorphism. We say that such a neighborhood V is evenly covered by π.

Example 22. Let X = S1 ⊆ C be the circle, considered as the set of points z with |z| = 1.
Then

π : X → X

z 7→ z2

is a covering space.

Example 23. Consider again the circle X = S1 ⊆ C. Then

π : R→ S1

t 7→ e2πit

is a covering space of X. (One can visualize R embedded in R3 as a helix with p the
projection map down to the plane.) [See picture on p. 49 of GGD.]

Remark 24. The fibers π−1(P) of a covering are discrete.

Remark 25. If X is a Riemann surface, then E inherits a unique holomorphic structure
such that the covering map π : E → X is holomorphic. The idea is that we simply pull
back the charts of X to E: given a chart (U, ϕ) on X, define a chart (π−1(U), ϕ ◦ π) on E.

Definition 26. Let π1 : E1 → X and π2 : E2 → X be coverings of X. A morphism from π1
to π2 is a continuous map f : E1 → E2 such that π1 = π2 ◦ f , i.e., such that the following
diagram commutes.

E1 E2

X

f

π1 π2

The map f is an isomorphism of coverings if it is a homeomorphism.

Definition 27. A deck transformation of a covering π : E → X is an automorphism of
the covering. The set of deck transformations of π is a group, denoted Deck(E/X) or
Deck

(
E π→ X

)
.
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Theorem 28. Let X be a connected topological space. Then there exists a covering π : X̃ → X
with X̃ connected and simply connected. Moreover X̃ is unique up to isomorphism.

Definition 29. The covering space X̃ in the previous theorem is called the universal covering
space of X.

Example 30.
• The covering map π : R → S1, t 7→ e2πit is the universal cover since R is simply

connected.
• Let Λ ⊆ C be a lattice and X = C/Λ be the corresponding torus. Then the quotient

map π : C→ X is the universal cover, since C is simply connected.

Covering spaces possess some important lifting properties.

Lemma 4 (Path-lifting lemma). Let π : E → X be a covering space. Let γ be a path on X
and let P = γ(0). Given any preimage e ∈ π−1(P) there exists a unique path γ̃ on E such that
π ◦ γ̃ = γ and γ̃(0) = e.

Definition 31. Such a γ̃ is called a lift of γ based at e.

Lemma 5 (Uniqueness of lifts). Let π : E → X be a covering space of X, let Y be a connected
topological space, and let f : (Y, y0) → (X, x0) be a continuous map of pointed spaces. (This
just means that f (y0) = x0.) Given e0 ∈ π−1(x0) there exists at most one continuous map
f̃ : (Y, y0)→ (E, e0) with π ◦ f̃ = f , i.e., such that the following diagram commutes.

(E, e0)

(Y, y0 (X, x0)

π

f

f̃
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